X-ray computed tomography (CT) and focused ion beam (FIB) microscopy were used to generate three dimensional representations of chromatography beads for quantitative analysis of important physical characteristics including tortuosity factor. Critical-point dried agarose, cellulose and ceramic beads were examined using both methods before digital reconstruction and geometry based analysis for comparison between techniques and materials examined. X-ray 'nano' CT attained a pixel size of 63 nm and 32 nm for respective large field of view and high resolution modes. FIB improved upon this to a 15 nm pixel size for the more rigid ceramic beads but required compromises for the softer agarose and cellulose materials, especially during physical sectioning that was not required for X-ray CT. Digital processing of raw slices was performed using software to produce 3D representations of bead geometry. Porosity, tortuosity factor, surface area to volume ratio and pore diameter were evaluated for each technique and material, with overall averaged simulated tortuosity factors of 1.36, 1.37 and 1.51 for agarose, cellulose and ceramic volumes respectively. Results were compared to existing literature values acquired using established imaging and non-imaging techniques to demonstrate the capability of tomographic approaches used here.
Keywords: Bead scale; Focused ion beam microscopy; Key words; Structure; Tortuosity; X-ray computed tomography.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.