Bisphenol A (BPA) is widely known as a typical synthetic environmental hormone. Effects of BPA concentrations and aerations on soil microbial communities were rarely reported. This paper presented the studies on effects of various concentrations of BPA (0, 0.25 mg·kg-1, 0.50 mg·kg-1, 1.00 mg·kg-1, 2.00 mg·kg-1) and soil aertaiton (aerobic and anaerobic) on characteristics of paddy soil microbial communites by technology of qPCR (fluorescence quantitative PCR) and PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). The results lined out that: ① the microbial abundance index was significantly different among different BPA concentrations under the same condition of soil aeration (anaerobic or aerobic). However, the index of microbial evenness, Shannon-Wiener-diversity and evenness-indices were insignificantly different under these conditions. At a concentration of 0.50 mg·kg-1, the microbial abundance index reached a maximum value under anaerobic conditions; while under aerobic conditions the opposite result was found, the microbial abundance index dropped to a minimum value. ② The two-way analysis of variance (ANOVA) showed that: the concentration of BPA, soil aeration and their interaction significantly affected the abundance of bacteria, whereas the abundance of fungi was only affected by soil aeration. The study results showed that: the abundance index was a sensitive indicator for the variation of soil microbial diversity; it was a critical value for the change of soil microbial abundance when the BPA concentration was 0.50 mg·kg-1; as for the abundance of fungi, the response of bacteria abundance was more sensitive to BPA and soil aeration conditions.
Keywords: abundance of gene; bisphenol A; diversity index; microbial community; soil microbe.