MicroRNAs (miRNAs) are an evolutionary conserved class of short, single-stranded noncoding RNAs (<18-22 nt in length) that act in posttranscriptional regulation of gene expression in higher eukaryotes. The abundance of a miRNA is a key feature in control of its activity and, therefore, a number of mechanisms finely regulate miRNA levels, acting at both transcriptional and posttranscriptional level. Recent evidences, including our research, highlighted the role of miRNA decay as a mechanism controlling the miRNA pool. We describe in this chapter an optimized methodology to determine miRNA degradation rates in mammalian cells. Our approach is based on metabolic pulse labeling with 4-thiouridine (4sU), a uridine analog that is incorporated in nascent RNA and allows thiol-specific biotinylation and selective pull-down of labeled RNA. In particular, given the long average half-life and the complex biogenetic process of miRNAs, we developed a "pulse-chase" protocol where 4sU is removed from the medium after a long labeling period (2-3 h pulse), and labeled RNA is purified at different time points to measure the decay of labeled molecules. By combining the 4sU-based "pulse-chase" approach with high-throughput small RNA sequencing (sRNAseq), it is possible to quantify at genome-wide level miRNA degradation rates.
Keywords: 4-thio-uridine; 4sU; Chase; Decay; Degradation; Half-life; Pulse; Sequencing; Small RNAs; Turnover; microRNAs; sRNAseq.