Immuno-based oncotherapy has been successfully implemented for cancer treatment. In the present study, we developed a Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs (CpG ODNs) nano-delivery system based on Multi-walled carbon nanotubes (MWCNTs) conjugated with H3R6 polypeptide (MHR-CpG) for prostate cancer immunotherapy. The in vitro and in vivo toxicity data revealed that the prepared MHR showed high biocompatibility. Confocal laser scanning microscopy confirmed that MHR-CpG could specifically target the endosomal TLR9. In addition, the use of MHR enhanced the immunogenicity of CpG in both humoral and cellular immune pathways, as evidenced by the increased expression of CD4+ T-cells, CD8+ T-cells, TNF-α, and IL-6. The in vivo anti-cancer efficacy study on RM-1 tumor-bearing mice demonstrated that MHR-CpG could deliver the immunotherapeutics to the tumor site and the tumor-draining lymph node to suppress tumor growth. These results suggested that MHR-CpG was a promising multifunctional nano system for prostate cancer immunotherapy.