CBLC (CBL proto-oncogene c) belongs to the CBL protein family, which has E3 ubiquitin ligase activity toward activated receptor tyrosine kinases. CBLC is frequently upregulated in non-small cell lung cancer (NSCLC), yet very little is known about the functions of CBLC in tumorigenesis. Here we show that CBLC is an epigenetically demethylated target and its expression can be upregulated in NSCLC after treatment with the DNA methylation inhibitor 5'-azacytidine. Depletion of CBLC significantly inhibited cell viability and clonogenicity in vitro and reduced tumor growth in a xenograft model. CBLC silencing further sensitized EGFR-mutated NSCLC cells to treatment with tyrosine kinase inhibitors. Conversely, ectopic expression of CBLC enhanced the activation of EGFR and downstream ERK1/2 signaling after ligand stimulation by competing with CBL for EGFR binding. Analysis of ubiquitin linkages on activated EGFR (aEGFR) revealed that CBLC ubiquitinated and positively regulated aEGFR stability through the conjugation of polyubiquitin by K6 and K11 linkages. This CBLC-mediated polyubiquitination promoted either preferential recycling of aEGFR back to the plasma membrane or trafficking to the cell nucleus. IHC analyses revealed a positive correlation between phospho-EGFR and CBLC in lung adenocarcinoma. In summary, we demonstrate a novel mechanism by which aEGFR escapes lysosomal degradation in a CBLC/ubiquitin-dependent manner to sustain its activation. Our work identifies CBLC as a potential diagnostic biomarker and also points to its utilization as a novel therapeutic target for NSCLC therapy.Significance: This work demonstrates the role of CBLC expression as a diagnostic biomarker and potential therapeutic target in lung adenocarcinoma. Cancer Res; 78(17); 4984-96. ©2018 AACR.
©2018 American Association for Cancer Research.