The health effects of individual criteria air pollutants have been well investigated. However, little is known about the health effects of air pollutant mixtures that more realistically represent environmental exposures. The present study was designed to evaluate the cardiac effects of inhaled simulated smog atmospheres (SA) generated from the photochemistry of either gasoline and isoprene (SA-G) or isoprene (SA-Is) in mice. Four-month-old female mice were exposed for 4 h to filtered air (FA), SA-G, or SA-Is. Immediately and 20 h after exposure, cardiac responses were assessed with a Langendorff preparation using a protocol consisting of 20 min of global ischemia followed by 2 h of reperfusion. Cardiac function was measured by index of left-ventricular developed pressure (LVDP) and cardiac contractility (dP/dt) before ischemia. Pre-ischemic LVDP was lower in mice immediately after SA-Is exposure (52.2 ± 5.7 cm H2O compared to 83.9 ± 7.4 cm H2O after FA exposure; p = 0.008) and 20 h after SA-G exposure (54.0 ± 12.7 cm H2O compared to 79.3 ± 7.4 cm H2O after FA exposure; p = 0.047). Pre-ischemic left ventricular contraction dP/dtmax was lower in mice immediately after SA-Is exposure (2025 ± 169 cm H2O/sec compared to 3044 ± 219 cm H2O/sec after FA exposure; p < 0.05) and 20 h after SA-G exposure (1864 ± 328 cm H2O/sec compared to 2650 ± 258 cm H2O/sec after FA exposure; p = 0.05). In addition, SA-G reduced the coronary artery flow rate 20 h after exposure compared to the FA control. This study demonstrates that acute SA-G and SA-Is exposures decrease LVDP and cardiac contractility in mice, indicating that photochemically-altered atmospheres affect the cardiovascular system.
Keywords: Cardiac contractility; Cardiac function; Mice; Photochemical reaction; Simulated atmospheres.