Bioactive natural products are important starting points for developing chemical tools for biological research. For elucidating their bioactivity profile, biological systems with concise complexity such as cell culture systems are frequently used, whereas unbiased investigations in more complex multicellular systems are only rarely explored. Here, we demonstrate with the natural product Rotihibin A and the plant research model system Arabidopsis thaliana that unbiased transcriptional profiling enables a rapid, label-free, and compound economic evaluation of a natural product's bioactivity profile in a complex multicellular organism. To this end, we established a chemical synthesis of Rotihibin A as well as that of structural analogues, followed by transcriptional profiling-guided identification and validation of Rotihibin A as a TOR signaling inhibitor (TOR=target of rapamycin). These findings illustrate that a combined approach of transcriptional profiling and natural product research may represent a technically simple approach to streamline the development of chemical tools from natural products even for biologically complex multicellular biological systems.
Keywords: TOR kinase; bioactivity; natural products; signaling; transcriptomics.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.