Se is an important bioelement essential for a healthy immune system. Dietary Se influences both innate and adaptive immune responses. However, the effects of Se deficiency in chicken spleen are still unknown; thus, we designed an experiment to study the role of Se in chicken spleen. A total of 180 one-day-old sea blue white laying hens were randomly allocated into two groups (a control group and a Se-deficient group). The control group was fed a diet supplemented with sodium selenite with a final Se content of 0.15 mg/kg, and the Se-deficient group was fed a Se-deficient diet with a Se content of 0.033 mg/kg. Twenty selenoproteins and ten cytokines were investigated in detail. The expression levels of selenoproteins in spleen were determined via real-time qPCR at 15, 35, and 55 days, and cytokine levels were determined using ELISA at 15, 35, and 55 days. Protein-protein interaction predictions and principal component analysis were performed. We found that the selenoprotein mRNA levels were significantly lower (P < 0.05) in the Se-deficient group compared with the control group. The expression levels of IL-2, IL-1β, IL-6, IFN-α, and IL-17 were significantly lower (P < 0.05), and the levels of IL-8, IL-10, IFN-γ, IFN-β, and TNF-α were significantly higher (P < 0.05) in the Se-deficient group. These selenoproteins were positively correlated with component 1 and component 2 of the PCA, but the relationship between cytokines and principal components in spleens was very complex. The investigation showed that Se deficiency caused a reduction in selenoprotein gene expression and further affected certain cytokines levels. Our results provide some compensatory data about selenoproteins and cytokines in spleens of Se-deficient chickens and provide clues for further research on the relationship between selenoproteins and cytokines.
Keywords: Chicken; Cytokine; Selenium; Selenoprotein; Spleen.