The division and differentiation of cells are the basis of growth and development. Cytokinin plays an active role in cell growth division and differentiation. The Related to ABI3/VP1 (RAV) family comprises transcription factors in plants and all contain both AP2- and B3-like domains. In this study, GmRAV1 (Glycine max), which belongs to the AP2/ERF transcription factor family, was isolated and functionally characterized. Subcellular localization showed that GmRAV1 was localized to the nucleus and quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that GmRAV1 was induced by cytokinin. Furthermore, compared with wild-type plants, plants overexpressing GmRAV1 showed dwarfism and late maturity. In contrast, the mutant of TEMPRANILLO (tem1) and GmRAV-i plants had an opposite phenotype. More interestingly, a root and shoot regeneration experiment indicated that GmRAV1 is one of the most important positive regulators of the cytokinin signaling pathway, which is involved in promoting root and shoot regeneration. In addition, RNA-seq and qRT-PCR results indicated that GmRAV1 is related to the key factors involved in the cytokinin signaling pathway, namely, cytokinin oxidase (GmCKX6 and GmCKX7), purine permease (GmPUP1), cell cyclin-related genes (GmCycA2;4, GmCycD3 and GmCYC1), cyclin-dependent kinase (GmCDKB2), cell division cycle (GmCDC20), E2F transcription factors (GmE2FE) and authentic response regulator (GmARR9). In conclusion, GmRAV1, one of the most important positive regulators involved in promoting root and shoot regeneration, was induced by cytokinin and is related to the key factors of the cytokinin signaling pathways.
© 2018 Scandinavian Plant Physiology Society.