Peroxisome proliferator-activated receptor coactivator-1 alpha (PGC-1α) is a transcriptional coactivator that regulates energy metabolism and mitochondrial biogenesis. Recently, mitochondrial dysfunction has been indicated as an established risk factor for the development of renal fibrosis. However, whether PGC-1α is involved in the pathogenesis of renal fibrosis is unknown. In this study, we treated NRK-49F (normal rat kidney fibroblast) cells with transforming growth factor-beta 1 (TGF-β1) for 24 h to establish an in vitro fibrosis model. TGF-β1 induced the upregulation of type I collagen, fibronectin, TGF-β receptor I (TGFβ-RI), TGFβ-RII, Smad4, and pSmad2/3, as well as PGC-1α. NRK-49F cells transfected with pcDNA-PGC-1α showed significantly increased expression of fibronectin and type I collagen, as revealed by western blot assay. Interestingly, transfection with PGC-1α-siRNA caused a stark reversal of TGF-β1-induced cellular fibrosis, with concomitant suppression of fibronectin and type I collagen, as revealed by western blot and immunofluorescence assays. Moreover, SB431542 (TGFβ-RI), LY294002 (PI3K/Akt), and SB203580 (p38 MAPK), inhibitors of TGF-β-associated pathways, markedly suppressed TGF-β1-induced PGC-1α upregulation. These results implicate a role of PGC-1α in renal interstitial fibrosis mediated via the TGFβ-RI, PI3K/Akt, and p38 MAPK pathways. Our findings that PGC-1α-siRNA downregulates fibronectin and type I collagen suggest that it can be used as a novel molecular treatment for renal fibrosis.
Keywords: Peroxisome proliferator-activated receptor coactivator-1 alpha(PGC-1α); Renal interstitial fibrosis; Transforming growth factor-beta 1 (TGF-β1).
Copyright © 2018. Published by Elsevier Inc.