Girdin functions as an Akt phosphorylation enhancer (APE), which expedites the proliferation and survival of many types of tumours. However, the influence of Girdin on pancreatic cancer and the underlying molecular mechanisms have yet to be uncovered. Hence, in the present study, we sought to elucidate the function of Girdin in pancreatic cancer malignancy, particularly its role in pancreatic cancer cell proliferation, migration and apoptosis. Immunohistochemistry (IHC) was used to evaluate Girdin expression in pancreatic cancer tissues and to analyse its correlation with pathological grade. Girdin expression was further validated in pancreatic cancer cell lines (AsPC‑1, BxPC‑3 and PANC‑1), and human pancreatic ductal epithelial (HPNE) cells were used as a control. Recombinant adenovirus vectors containing Girdin‑siRNA were constructed to inhibit Girdin expression and were used in subsequent experiments to determine the effects of Girdin silencing on pancreatic cancer cells. Girdin silencing suppressed pancreatic cancer cell proliferation and induced pancreatic cancer cell apoptosis in vitro and in vivo. According to the results of further mechanistic investigations, Girdin may regulate cell processes through the phosphatidylinositol‑3‑kinase/protein kinase B (PI3K/Akt) signalling pathway to exert additive effects on pancreatic cancer.