Background: The use of patient simulators in ophthalmic education appears limited. This study examines the effects of the addition of the 'Virtual Refractor' patient simulator learning activity into a short unit preparing students to determine the power of the spectacle lenses required by patients in a clinic.
Methods: Twenty-four year one optometry students were randomly assigned to either the simulator-intervention group (n = 12) or the non-intervention group. All students attended tutorials on refraction and the use of a refractor-head. Simulator-intervention students additionally attended a tutorial on the Virtual Refractor. All answered a questionnaire concerning time spent studying, perceived knowledge and confidence. Twenty-four short-sighted patients were recruited. Two refractions per student were timed and the accuracy compared with that of an experienced optometrist.
Results: Ten students from each group completed the study. Students who used the simulator were significantly (p < 0.05) more accurate at a clinical level (within 0.22 ± 0.22 DS, 95 per cent CI 0.12-0.32) than those who did not (within 0.60 ± 0.67 DS, 95 per cent CI 0.29-0.92) and 13 per cent quicker (4.7 minutes, p < 0.05). Students who used the simulator felt more knowledgeable (p < 0.05) and confident (p < 0.05), but had spent more time reading about refraction and practised on the Virtual Refractor at home for 5.7 ± 1.3 hours.
Conclusion: The Virtual Refractor has many features of high-fidelity medical simulation known to lead to effective learning and it also offers flexible independent learning without a concomitant increase in the student time-burden. The improved accuracy and speed on first patient encounters found in this study validates the use of this patient simulator as a useful bridge for students early in training to successfully transfer theoretical knowledge prior to entering the consulting room. The translational benefits resulting from compulsory learning activities on a patient simulator can lead to reduced demands on infrastructure and clinical supervision.
Keywords: ophthalmic clinical skills; patient simulator; primary care; simulation-based education; translational research.
© 2018 Optometry Australia.