Double-shell hollow particles (DSHPs) have attracted significant attention due to their diverse potential applications. DSHPs are usually obtained by multi-step sacrificial template method which is tedious and inefficient. In this work, a facile synthesis of silica DSHPs has been developed via a novel one-step template method, which is using single-hole hollow particles (SHHPs) as the templates. The shapes and internal structures of the DSHPs were determined by SEM and TEM, and the average diameters of inner and outer shells were about 0.6 and 1.6 μm, respectively. According to FTIR analyses, the compositions of silica DSHPs were identified as well. Furthermore, the silica DSHPs was applied to Li-ion batteries as a modifier of gel polymer electrolyte (GPEs), and the results showed that the gel composite electrolytes (GCEs) could display higher capability, higher ionic conductivity and better rate performance at high current density for GCEs-cell. Properties of the silica DSHPs such as larger specific surface area, more porous structures and Lewis acid-base effect were important for high-performance Li-ion batteries.
Keywords: Double-shell hollow particles (DSHPs); Gel composite electrolytes; One-step template method; Silica.
Copyright © 2018 Elsevier Inc. All rights reserved.