Successful molecular targeting of nanoparticle drug carriers can enhance therapeutic specificity and reduce systemic toxicity. Typically, ligands specific for cognate receptors expressed on the intended target cell type are conjugated to the nanoparticle surface. This approach, often called active targeting, seems to imply that the conjugated ligand imbues the nanoparticle with homing capacity. However, ligand-receptor interactions are mediated by short-range forces and cannot produce magnetic-like attraction over larger distances. Successful targeting actually involves two key characteristics: contact of the nanoparticle with the intended target cell and subsequent ligand-mediated retention at the site. Here we propose a conceptual framework, based on recent literature combined with basic principles of molecular interactions, to guide rational design of nanoparticle targeting strategies.
Keywords: ex vivo organ perfusion; kinetic competition; nanoparticle; receptor–ligand binding; vascular targeting.
Copyright © 2018 Elsevier Ltd. All rights reserved.