The cost and highly invasive nature of brain monitoring modality in traumatic brain injury patients currently restrict its utility to specialist neurological intensive care settings. We aim to test the abilities of a frequency domain near-infrared spectroscopy (FD-NIRS) device in predicting changes in invasively measured brain tissue oxygen tension. Individuals admitted to a United Kingdom specialist major trauma center were contemporaneously monitored with an FD-NIRS device and invasively measured brain tissue oxygen tension probe. Area under the curve receiver operating characteristic (AUROC) statistical analysis was utilized to assess the predictive power of FD-NIRS in detecting both moderate and severe hypoxia (20 and 10 mm Hg, respectively) as measured invasively. Sixteen individuals were prospectively recruited to the investigation. Severe hypoxic episodes were detected in nine of these individuals, with the NIRS demonstrating a broad range of predictive abilities (AUROC 0.68-0.88) from relatively poor to good. Moderate hypoxic episodes were detected in seven individuals with similar predictive performance (AUROC 0.576-0.905). A variable performance in the predictive powers of this FD-NIRS device to detect changes in brain tissue oxygen was demonstrated. Consequently, this enhanced NIRS technology has not demonstrated sufficient ability to replace the established invasive measurement.
Keywords: brain tissue oxygen tension; cerebral hypoxia; cerebral non-invasive monitoring; critical care; frequency domain near-infrared spectroscopy; traumatic brain injury.