The direct and quantitative identification of active sites is crucial for the development of zeolite catalysts and their implementation in industry. Herein we report on the application of one-dimensional 119Sn direct polarization (DP) and rotational echo double-resonance (REDOR) and two-dimensional 119Sn magic-angle tuning (MAT) NMR spectroscopy for the identification of different Sn sites in fully dehydrated Sn-BEA zeolite. It is demonstrated that 119Sn magic-angle spinning (MAS) NMR techniques, modified by Carr-Purcell-Meiboom-Gill (CPMG) echo-train acquisition allow to resolve three groups of NMR signals, which can be attributed to three groups of nonequivalent T-sites based on the existing theoretical predictions: (I) T9, T4, and T3; (II) T2, T1, and T8; and (III) T7, T5, and T6. Results suggest that the sites attributed to group III are the most populated in Sn-BEA samples obtained via the fluoride route. The attribution of NMR lines to different T-sites in the structure of BEA allows for the establishment of structure-reactivity relationship and therefore for further improvement of Sn-BEA catalysts.