High androgen level impairs endometrial receptivity in women experiences the recurrent miscarriage. The mechanism of androgen actions on endometrium is still uncertain. We hypothesized that androgen has a direct effect on the endometrium in women with recurrent miscarriage. In the present study, we assess the impact of androgen (A2) at high concentration (10-7 M) on Ishikawa cells compared with the physiological concentration of androgen (10-9 M). To go into deeper analysis, we use global stable isotopes labeled profiling tactic using iTRAQ reagents, followed by 2D LC-MS/MS. We determine 175 non-redundant proteins, and 18 of these were quantified. The analysis of differentially expressed proteins (DEPs) identified 8 up-regulated proteins and 10 down-regulated in the high androgen group. These DEPs were examined by ingenuity pathway (IPA) analysis and established that these proteins might play vital roles in recurrent miscarriage and endometrium receptivity. In addition, proteins cyclin-dependent kinase inhibitor 2a (CDKN2a), endothelial protein C receptor (EPCR), armadillo repeat for velocardiofacial (ARVCF) were independently confirmed using western blot. Knockdown of CDKN2a significantly decreased the expression level of CDKN2a protein in ishikawa cells, and decreased migration (p < 0.01), invasion (p < 0.05), proliferation (p < 0.05), and the rate of Jar spheroid attachment (p < 0.05) to Ishikawa cell monolayer. The present results suggest that androgen at high concentration could alter the expression levels of proteins related to endometrium development and embryo implantation, which might be a cause of the impaired endometrial receptivity and miscarriage.
Keywords: PCOS; androgen; recurrent miscarriage.