Since the discovery of autoimmunity as the main pathophysiologic process involved in type 1 diabetes, many attempts have tried to delay or stop beta cell destruction. Most research protocols in humans have investigated the effects of therapeutic agents targeting specific steps of the autoimmune response. In spite of safety and some degree of beta cell preservation, the clinical impact of such approaches was similar to placebo. Recently, research groups have analyzed the effects of a more intense and wider immunologic approach in newly diagnosed type 1 diabetic individuals with the "immunologic reset," i.e., high-dose immunosuppression followed by autologous hematopoietic stem cell transplantation. This more aggressive approach has enabled the majority of patients to experience periods of insulin independence in parallel with relevant increments in C-peptide levels during mixed meal tolerance test. However, on long-term follow-up, almost all patients resumed exogenous insulin use, with subsequent decrease in C-peptide levels. This has been at least in part explained by persistence of islet-specific T-cell auto-reactivity. Here, we discuss future steps to induce immune tolerance in individuals with type 1 diabetes, with emphasis on risks and possible benefits of a more intense transplant immunosuppressive regimen, as well as strategies of beta cell replacement not requiring immunomodulation.
Keywords: autoimmunity; autologous hematopoietic stem cell transplantation; beta cell preservation; immunologic reset; immunotherapy; type 1 diabetes.