Caerin is a family of peptides isolated from the glandular secretion of Australian tree frogs, the genus Litoria, and has been previously shown to have anticancer activity against several cancer cells. In this work, we used two host-defence peptides, caerin 1.1 and caerin 1.9, to investigate their ability to inhibit a murine derived TC-1 cell transformed with human papillomavirus 16 E6 and E7 growth in vitro. Caerin 1.9 inhibits TC-1 cell proliferation, although inhibition is more pronounced when applied in conjunction with caerin 1.1. To gain further insights into the antiproliferative mechanisms of caerin 1.9 and its additive effect with caerin 1.1, we used a proteomics strategy to quantitatively examine (i) the changes in the protein profiles of TC-1 cells and (ii) the excretory-secretory products of TC-1 cells following caerin peptides treatment. Caerin 1.9 treatment significantly altered the abundance of several immune-related proteins and related pathways, such as the Tec kinase and ILK signalling pathways, as well as the levels of proinflammatory cytokines and chemokines. In conclusion, caerin peptides inhibit TC-1 cell proliferation, associated with modification in signalling pathways that would change the tumour microenvironment which is normally immune suppressive.