Background: The high constitutive, or ligand-independent, activity of the thyrotropin receptor (TSHR) is of clinical importance in some thyroid conditions, particularly well-differentiated thyroid carcinoma remnants following incomplete ablative therapy (surgery and radioiodine). Under these conditions, even total suppression of TSH by thyroid hormone administration does not fully reduce TSHR activity, a driver of thyrocyte growth.
Methods: CS-17 is a murine monoclonal antibody that has inverse agonist activity in that it suppresses TSHR constitutive activity. This study crystallized the CS-17 Fab and determined its atomic structure at a resolution of 3.4 Å.
Results: In silico docking of this structure to that of the TSHR extracellular domain was accomplished by targeting to TSHR residue tyrosine 195 (Y195) known to contribute to the CS-17 epitope. High affinity interaction between these two molecules, primarily by the CS-17 immunoglobulin heavy chain, was validated by energetic analysis (KD of 8.7 × 10-11 M), as well as by previously obtained data on a number of individual TSHR amino acids in three regions whose mutagenesis reduced CS-17 binding as detected by flow cytometry.
Conclusions: Structural insight at atomic resolution of a TSHR antibody with inverse agonist activity opens the way for the development of a molecule with therapeutic potential, particularly in thyroid carcinoma. For this purpose, CS-17 will require "humanization" by substitution of its constant region (Fc component). In addition, with its epitope defined, the CS-17 affinity can be increased further by mutagenesis of selected amino acids in its heavy- and light-chain complementarity determining regions.
Keywords: TSH receptor; inverse agonist; monoclonal antibody.