TiO2 Nanoparticles as Potential Promoting Agents of Fibrillation of α-Synuclein, a Parkinson's Disease-Related Protein

Iran J Biotechnol. 2017 Aug 19;15(2):87-94. doi: 10.15171/ijb.1519. eCollection 2017.

Abstract

Background: In recent years, nanomaterials have been widely used in large quantities which make people be more frequently exposed to the chemically synthesized nanoparticles (NPs). When NPs are introduced into an organism, they may interact with a variety of cellular components with yet largely unknown pathological consequences. Objective: It was found that NPs enhance the rate of protein fibrillation in the brain by decreasing the lag time for nucleation. Protein fibrillation is implicated in the pathogenesis of the several neurodegenerative diseases such as Parkinson's disease (PD). α-Synuclein (αS) is natively an unfolded protein which is involved in the pathogenesis of PD. In the present study, we have analyzed the effects of three different NPs on αS fibrillation. Materials and Methods: αS protein expression and purifi cation was done and fibrils formation was induced in the absence or presence of the three types of NPs (i. e., TiO2, SiO2, and SnO2). The enhancement of the fluorescence emission of Thiofl avin T (ThT) and transmission electron microscopy (TEM) were used to monitor the appearance and growth of the fibrils. The adsorption of αS monomers on the surface of NPs was investigated by tyrosine fluorescence emission measurements. Results: We found that TiO2-NPs enhances αS fibril formation even at a concentration of 5 μg.mL-1, while the two other NPs show no significant effect on the kinetics of the fibrillation. Intrinsic tyrosine emission measurement has confirmed that the TiO2-NPs interact with αS fibrillation products. It is suggested that TiO2- NPs may enhance the nucleation of αS protein that leads to protein fibril formation. Conclusion: The fibrillization process of αS protein is profoundly affected by the presence of TiO2-NPs. This finding unveils the neurotoxicity potential of the TiO2-NPs, which may be considered as a probable risk for PD.

Keywords: Nanoparticles (NPs); Parkinson’s disease (PD); Titanium Dioxide Nanoparticles (TiO2-NPs); α-Synuclein (αS).