Little auks (Alle alle) are one of the most numerous seabird species in the world and feed primarily on copepods in arctic waters. Their high daily energy requirements leave them vulnerable to current changes in the arctic plankton community, where a smaller, less-profitable copepod species (Calanus finmarchicus) becomes increasingly abundant. Little auks have been estimated to require ∼60,000 copepods per day, necessitating prey capture rates of ∼6 copepods per second underwater. To achieve such performance, it has been suggested that little auks capture their prey by (non-visual) filter feeding. We tested this hypothesis by exposing little auks to varying copepod densities within a shallow experimental pool and filming their prey capture behaviour. At none of the copepod densities tested did birds filter feed. Instead, all birds captured copepods by what we identified as visually guided suction feeding, achieved through an extension of their sub-lingual pouch. Suction feeding is very common in fish and marine mammals, but to the best of our knowledge, this is the first time that it has been specifically identified in a seabird species. While presumably less efficient than filter feeding, this behaviour may allow little auks to foster higher resilience when facing the consequences of arctic climate change.
Keywords: Climate change; Copepods; Diving; Feeding mechanism; Foraging; Little auks.
© 2018. Published by The Company of Biologists Ltd.