Background: Testosterone supplementation has been linked to increased cardiovascular disease risk in some observational studies. The causal role of testosterone can be investigated using a Mendelian randomization approach.
Methods and results: We assessed genetic associations of variants in two gene regions (SHBG and JMJD1C) with several cardiovascular risk factors (lipids, adiponectin, blood pressure, anthropometric traits) plus male pattern baldness, including control outcomes and potential mediators. We assessed genetic associations with coronary artery disease (CAD) risk in the CARDIoGRAMplusC4D consortium (171,191 individuals including 60,801 cases), and associations with CAD and ischaemic stroke risk in the UK Biobank (367,643 individuals including 25,352 CAD cases and 3650 ischaemic stroke cases). Genetic predictors of increased serum testosterone were associated with lipids, blood pressure, and height. There was some evidence of an association with risk of CAD (SHBG gene region: odds ratio (OR) 0.95 per 1 unit increase in log-transformed testosterone [95% confidence interval: 0.81-1.12, p = 0.55]; JMJD1C gene region: OR 1.24 [1.01-1.51, p = 0.04]) and ischaemic stroke both overall (SHBG: OR 1.05 [0.64, 1.73, p = 0.83]; JMJD1C: OR 2.52 [1.33, 4.77, p = 0.005]) and in men. However, associations with some control outcomes were in the opposite direction to that expected.
Conclusions: Sex hormone-related mechanisms appear to be relevant to cardiovascular risk factors and for stroke (particularly for men). However, the extent that these findings are specifically informative about endogenous testosterone or testosterone supplementation is unclear. These findings underline a fundamental limitation for the use of Mendelian randomization where biological knowledge about the function of genetic variants is uncertain.
Keywords: Causal inference; Disease aetiology; Genetic epidemiology; Mendelian randomization; Sex hormones; Testosterone.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.