α-Diimines as Versatile, Derivatizable Ligands in Ruthenium(II) p-Cymene Anticancer Complexes

Inorg Chem. 2018 Jun 4;57(11):6669-6685. doi: 10.1021/acs.inorgchem.8b00882. Epub 2018 May 23.

Abstract

α-Diimines are among the most robust and versatile ligands available in synthetic coordination chemistry, possessing finely tunable steric and electronic properties. A series of novel cationic ruthenium(II) p-cymene complexes bearing simple α-diimine ligands, [(η6- p-cymene)RuCl{κ2 N-(HCNR)2}]NO3 (R = Cy, [1]NO3; R = 4-C6H10OH, [2]NO3; R = 4-C6H4OH, [3]NO3), were prepared in near-quantitative yields as their nitrate salts. [2]NO3 displays high water solubility. The potential of the α-diimine ligand in [3]NO3 as a carrier of bioactive molecules was investigated via esterification reactions with the hydroxyl groups. Thus, the double-functionalized derivatives [(η6- p-cymene)RuCl{κ2 N-(HCN(4-C6H4OCO-R))2}]NO3 (R = aspirinate, [5]NO3; valproate, [6]NO3) and also [4]Cl (R = Me) were obtained in good-to-high yields. UV-vis and multinuclear NMR spectroscopy and cyclic voltammetric studies in aqueous solution revealed only minor ruthenium chloride hydrolytic cleavage, biologically accessible reduction potentials, and pH-dependent behavior of [3]NO3. Density functional theory analysis was performed in order to compare the Ru-Cl bond strength in [1]+ with the analogous ethylenediamine complex, showing that the higher stability observed in the former is related to the electron-withdrawing properties of the α-diimine ligand. In vitro cytotoxicity studies were performed against tumorigenic (A2780 and A2780cisR) and nontumorigenic (HEK-293) cell lines, with the complexes bearing simple α-diimine ligands ranging from inactive to IC50 values in the low micromolar range. The complexes functionalized with bioactive components, i.e., [5]NO3 and [6]NO3, exhibited a marked increase in the cytotoxicity with respect to the precursor [3]NO3.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Aspirin / pharmacology
  • Cell Line, Tumor
  • Cisplatin / pharmacology
  • Coordination Complexes / chemical synthesis
  • Coordination Complexes / chemistry
  • Coordination Complexes / pharmacology*
  • Cymenes
  • Drug Stability
  • Electrochemical Techniques
  • Humans
  • Imines / chemical synthesis
  • Imines / chemistry
  • Imines / pharmacology*
  • Ligands
  • Models, Chemical
  • Monoterpenes / chemical synthesis
  • Monoterpenes / chemistry
  • Monoterpenes / pharmacology*
  • Quantum Theory
  • Ruthenium / chemistry*
  • Solubility
  • Valproic Acid / pharmacology
  • Water / chemistry

Substances

  • Antineoplastic Agents
  • Coordination Complexes
  • Cymenes
  • Imines
  • Ligands
  • Monoterpenes
  • Water
  • 4-cymene
  • Valproic Acid
  • Ruthenium
  • Cisplatin
  • Aspirin