The crayfish plague agent Aphanomyces astaci is one of the world's most threatening invasive species. Originally from North America, the pathogen is being imported alongside American crayfish species, which are used for various purposes. In this study, we investigated the marginal, currently known distribution area of the pathogen in Eastern Europe by sampling narrow-clawed crayfish (Astacus leptodactylus) and spiny-cheek crayfish (Orconectes limosus) populations. In addition, using specific real-time PCR, we tested several marine decapod species, which also occur in brackish waters of the Danube at the West coast of the Black Sea and the Dniester River basin. By sequencing the nuclear chitinase gene, mitochondrial rnnS/rnnL DNA and by genotyping using microsatellite markers, we identified the A. astaci haplogroups of highly infected specimens. The A. astaci DNA was detected in 9% of the investigated A. leptodactylus samples, both in invaded and non-invaded sectors, and in 8% of the studied O. limosus samples. None of the marine decapods tested positive for A. astaci. The results revealed that narrow-clawed crayfish from the Dniester River carried the A. astaci B-haplogroup, while A. astaci from the Danube Delta belonged to the A- and B-haplogroups. In the invaded sector of the Danube, we also identified the A-haplogroup. Microsatellite analysis revealed a genotype identical to the genotype Up. It might be that some of the detected A. astaci haplogroups are relics from older outbreaks in the late 19th century, which may have persisted as a chronic infection for several decades in crayfish populations.
Keywords: Danube; Dniester River; Haplotypes; Invasive species; Narrow-clawed crayfish; Real-time PCR.
Copyright © 2018 Elsevier Inc. All rights reserved.