Dysregulation of long non-coding RNAs is a newly identified mechanism for tumour progression. Previous studies have suggested that the nuclear factor of activated T cells (NFAT) gene plays a very important role in cancer growth and metastasis. However, lncNRON is a newly identified repressor of NFAT, and its function is largely unknown, especially in hepatocellular carcinoma (HCC). Therefore, the expression levels of lncNRON in 215 pairs of HCC tissue were evaluated by qRT-PCR, and its relationship to clinicopathological parameters, recurrence, and survival was analysed. Furthermore, stably overexpressing lncNRON cell lines were constructed and evaluated for cell phenotype. Finally, we detected epithelial-to-mesenchymal transition (EMT) proteins to determine the underlying mechanism involved in lncNRON function. We observed that lncNRON was downregulated in HCC tumour tissues; low lncNRON expression was associated with poor tumour differentiation and the presence of vascular tumour thrombus, which tended to result in poor clinical outcomes, as demonstrated by the recurrence rate and survival curves. Functional analysis showed that lncNRON overexpression impaired colony formation and cell viability and inhibited cell migration and invasion. A study using tumour-bearing mice showed that lncNRON markedly limited tumour growth and lung metastasis in vivo. Importantly, western blot analysis revealed that the expression of the EMT-related epithelial marker, E-cadherin, increased, whereas the expression of mesenchymal markers N-cadherin, snail, and vimentin was attenuated by lncNRON overexpression in HCC cells. Therefore, lower lncNRON expression indicates a poorer clinical outcome in HCC. LncNRON overexpression can suppress HCC growth and metastasis via inhibiting the EMT, and lncNRON may function as a new HCC prognostic marker.
Keywords: Hepatocellular carcinoma; Long non-coding RNA; Metastasis; NRON; Nuclear factor of activated T cells.
Copyright © 2018 Elsevier Masson SAS. All rights reserved.