Evidence is limited regarding whether ambient monitoring can properly represent personal ozone exposure. We conducted a longitudinal panel study to measure personal exposure to ozone using real-time personal ozone monitors. Corresponding ambient ozone concentrations and possible influencing factors (meteorological conditions and activity patterns) were also collected. We used linear mixed-effect models to analyze personal-ambient ozone concentration associations and possible influencing factors. Ambient ozone concentrations were around two to three times higher than personal ozone (43.1 μg/m3 on average) and their correlations were weak with small slopes (0.35) and marginal R square (RM2) values (0.24). Larger RM2 values were found under high temperature (>29.5 °C), low humidity (<62.1%), good ventilation conditions (>4 h) and for individuals spent longer time outdoors (>0.6 h). In final model, personal ozone exposure was positively associated with ambient concentrations and ventilation conditions, but inversely correlated with ambient temperature and humidity. The models explained >50% of personal ozone concentration variabilities. Our results highlight that ambient ozone concentration alone is not a suitable surrogate for individual exposure assessment. Meteorological conditions (temperature and humidity) and activity patterns (windows opening and outdoor activities) that affecting personal ozone exposure should be taken into account.
Keywords: Ambient concentrations; Influencing factors; Ozone; Panel study; Personal exposure.
Copyright © 2018 Elsevier Ltd. All rights reserved.