[The analysis of the trend of mortality rate of falls in China from 1990 to 2015]

Zhonghua Yu Fang Yi Xue Za Zhi. 2018 May 6;52(5):498-510. doi: 10.3760/cma.j.issn.0253-9624.2018.05.009.
[Article in Chinese]

Abstract

Objective: To understand the status and trend of the mortality rate of falls in different gender, age groups and provinces in China from 1990 to 2015, to explore the number of subgroups of different trends in all provinces, and to determine the different trajectory of subgroups. Methods: Using the mortality rate of falls in China from 1990 to 2015 from the Global Disease Burden 2015 (data covers 31 provinces, autonomous regions, municipalities, as well as Hong Kong and Macau Special Administrative Regions, excluding Taiwan Province) to describe the status of the mortality rate of falls in different gender, age group and provinces in China 2015 and to calculate the corresponding relative change. Using log linear model to calculate the annual percent changes from 1990 to 2015. The number of subgroups and corresponding characteristics of different trajectories were analyzed by trajectory model to analyze with four indicators, P value of the coefficient of independent variables with different orders in all subgroups, Bayesian information criterion, log Bayes factor and average posterior probability. Results: In 2015, the age standardized mortality rate of falls in China was 8.38/100 000 (95%UI: 5.54/100 000-9.30/100 000), which was higher in men (10.81/100 000, 95%UI: 6.58/100 000-12.14/100 000) than that in women (5.84/100 000,95%UI: 3.41/100 000-6.62/100 000), and in the elderly aged 70-year-old and above (60.50/100 000, 95%UI: 38.36/100 000-67.75/100 000) than that in other age groups. From 1990 to 2015, there was no obvious change in the age standardized mortality rate of falls in total population, men and women with average percent change about 0.37 (95%UI: -0.08-0.83), 0.45 (95%UI: 0.05-0.84) and 0.31 (95%UI: -0.26-0.87) respectively, but a significant decrease and increase could be seen in children under 15-year-old, especially under 5-year-old with average percent change about -4.07 (95%UI: -5.62--2.51), and the elderly aged 70-year-old and above with average percent change about 1.89 (95%UI: 1.42-2.37) respectively. Four types of trajectories could be categorized for different trends of age standardized mortality rate of falls in all provinces. The first group had the lowest fall mortality with a downward trend. The fall mortality was close in the second and third group but with different change tendency, a decreasing propensity in the former and an increasing one in the latter. The fourth group had the highest fall morality with obvious fluctuation. Conclusion: There was no significant change in the age standardized mortality rate of falls in China from 1990 to 2015. However, the trend of age standardized mortality rate of falls varied in different age and provinces during the same period of time.

目的: 分析1990—2015年中国不同性别、年龄段和省份人群的跌倒死亡率状况和变化趋势,并确定各亚组的发展轨迹。 方法: 利用2015年全球疾病负担中国跌倒标化死亡率数据(数据覆盖31个省、自治区、直辖市,以及香港和澳门特别行政区,不含台湾省)描述2015年中国不同性别、年龄段和省份人群的跌倒死亡率状况,计算1990—2015年跌倒死亡率相对变化幅度,采用对数线性回归模型计算跌倒死亡率年度变化百分比,采用轨迹分析模型对不同省份跌倒死亡率的变化趋势进行分组,根据不同阶数自变量的系数P值、贝叶斯信息标准、贝叶斯因子对数值和平均后验分组概率等四个指标确定最佳分组数量,并描述各组跌倒死亡率发展轨迹。 结果: 2015年中国跌倒标化死亡率为8.38/10万(95%UI:5.54/10万~9.30/10万),男性(10.81/10万,95%UI:6.58/10万~12.14/10万)高于女性(5.84/10万,95%UI:3.41/10万~6.62/10万),70岁以上人群死亡率(60.50/10万,95%UI:38.36/10万~67.75/10万)高于其他年龄人群。1990—2015年中国全人群、男性和女性跌倒标化死亡率未有明显变化,年度变化百分比分别为0.37(95%UI:-0.08~0.83)、0.45(95%UI:0.05~0.84)和0.31(95%UI:-0.26~0.87),5岁以下儿童的跌倒死亡率明显下降,年度变化百分比为-4.07(95%UI:-5.62~-2.51),70岁及以上人群跌倒死亡率明显上升,年度变化百分比为1.89(95%UI:1.42~2.37)。各省份跌倒标化死亡率变化趋势存在4种不同发展轨迹,其中第1组跌倒死亡率水平最低,且呈现持续下降趋势,第2组和第3组跌倒标化死亡率相对接近,但变化趋势有所不同,第2组朝着跌倒死亡下降的方向发展,第3组则存在反复可能性,第4组跌倒标化死亡率最高,且波动幅度明显。 结论: 1990—2015年中国跌倒标化死亡率未有明显变化,但不同年龄人群变化幅度差异明显,不同省份的变化趋势有所不同。.

Keywords: Cost of illness; Falls; Injury; Prevention; Retrospective studies.

MeSH terms

  • Accidental Falls / mortality*
  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Bayes Theorem
  • Child
  • China / epidemiology
  • Cities
  • Female
  • Humans
  • Male
  • Middle Aged
  • Probability
  • Sex Factors
  • Young Adult