The testis is an organ that maintains an immune suppressive environment. We previously revealed that exposure of pre-pubertal rats to an acute dose of a well-described Sertoli cell toxicant, mono-(2-ethylhexyl) phthalate (MEHP), leads to an accumulation of CD11b+ immune cells in the testicular interstitial space that closely correlates with a robust incidence of germ cell (GC) apoptosis. Here, we test the hypothesis that the infiltrating immune cells contribute to GC apoptosis. Postnatal day 28 Fischer rats that received an oral dose of 700 mg/kg MEHP showed a significant infiltration of both CD11bc+/CD68+/CD163- macrophages and neutrophils. The infiltration peaked at 12 h, but had reduced by 48 h. Testicular macrophages from MEHP-treated rats showed significantly upregulated expression of Tnfa and Il6, and the Arg1/Nos2 ratio was reduced compared to controls. However, small increases in anti-inflammatory genes Il10 and Tgfb1 were also observed. Depletion of circulating monocytes with clodronate liposomes prior to MEHP treatment reduced the macrophage influx into the testis, but did not lower GC apoptosis. Additionally, depletion of neutrophils using an anti-polymorphonuclear cell antibody prevented both macrophage and neutrophil infiltration into the testis, and also did not affect GC apoptosis. Together, these results show that exposure to MEHP leads to a rapid and temporary influx of pro-inflammatory monocytes and neutrophils in the interstitium of the testis. However, with this acute dosing paradigm, these infiltrating leukocytes do not appear to contribute to MEHP-induced testicular GC apoptosis leaving the functional significance of these infiltrating cells in the pathogenesis of MEHP-induced testicular injury unresolved.
© 2018 Society for Reproduction and Fertility.