Tumor Specific and Renal Excretable Star-like Triblock Polymer-Doxorubicin Conjugates for Safe and Efficient Anticancer Therapy

Biomacromolecules. 2018 Jul 9;19(7):2849-2862. doi: 10.1021/acs.biomac.8b00425. Epub 2018 May 21.

Abstract

Efficient tumor accumulation and body clearance are two paralleled requirements for ideal nanomedicines. However, it is hard for both to be met simultaneously. The inefficient clearance often restrains the application of drug delivery systems (DDSs), especially for high-dosage administration. In this study, the star-like and block structures are combined to enhance the tumor specific targeting of the parent structures and obtain additional renal excretion property. The influences of polymer architectures and chemical compositions on the physicochemical and biological properties, particularly the simultaneous achievement of tumor accumulation and renal clearance, have been investigated. Among the tested conjugates, an eight-arm triblock star polymer based on poly(ethylene glycol) (PEG) and poly( N-(2-hydroxyl) methacrylamide) (PHPMA) is found to simultaneously fulfill the requirements of superior tumor accumulation and efficient renal clearance due to the appropriate micelle size and reversible aggregation process. On the basis of this conjugate, 60 mg/kg of Dox equivalent (much higher than the maximum tolerated dose (MTD) of Dox) can be administered to efficiently suppress tumor growth without causing any obvious toxicity. This work provides a new approach to design polymer-drug conjugates for tumor specific application, which can simultaneously address the efficacy and safety concerns.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylamides / chemistry
  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / pharmacokinetics
  • Antineoplastic Agents / therapeutic use
  • Cell Line, Tumor
  • Doxorubicin / administration & dosage*
  • Doxorubicin / analogs & derivatives
  • Doxorubicin / pharmacokinetics
  • Female
  • Mice
  • Mice, Inbred BALB C
  • Nanoconjugates / adverse effects
  • Nanoconjugates / chemistry*
  • Polyethylene Glycols / chemistry
  • Renal Elimination
  • Tissue Distribution

Substances

  • Acrylamides
  • Antineoplastic Agents
  • Nanoconjugates
  • Polyethylene Glycols
  • Doxorubicin
  • methacrylamide