Resonance bonding in XNgY (X = F, Cl, Br, I; Ng = Kr or Xe; Y = CN or NC) molecules: an NBO/NRT investigation

J Mol Model. 2018 May 7;24(6):129. doi: 10.1007/s00894-018-3665-0.

Abstract

Several noble-gas-containing molecules XNgY were observed experimentally. However, the bonding in such systems is still not understood. Using natural bond orbital and natural resonance theory (NBO/NRT) methods, the present work investigated bonding of the title molecules. The results show that each of the studied XNgY molecules should be better described as a resonance hybrid of ω-bonding and [Formula: see text]-type long-bonding structures: X:- Ng+ - Y, X - Ng+: Y-, and X^Y. The ω-bonding and long-bonding make competing contributions to the composite resonance hybrid due to the accurately preserved bond order conservation principle. We find that the resonance bonding is highly tunable for these noble-gas-containing molecules due to its dependence on the nature of the halogen X or the central noble-gas atoms Ng. When the molecule XNgY consists of a relatively lighter Ng atom, a relatively low-electronegative X atom, and the CN fragment rather than NC, the long-bonding structure X^Y tends to be highlighted. In contrast, the heavy Ng atom and high-electronegative X atom will enhance the ω-bonding structure. Overall, the present work provides electronic principles and chemical insights that help understand the bonding in these XNgY species.

Keywords: Long-bonding; NBO/NRT methods; Noble-gas-containing molecules; Resonance bonding; ω-bonding.