Background/aims: RBFOX3, an RNA-binding fox protein, plays an important role in the differentiation of neuronal development, but its role in the chemosensitivity of hepatocellular carcinoma (HCC) to 5-FU is unknown.
Methods: In this study, we examined the biological functions of RBFOX3 and its effect on the chemosensitivity of HCC cells to 5-FU in vitro and in a mouse xenograft model.
Results: RBFOX3 was found to have elevated expression in HCC cell lines and tissue samples, and its knockdown inhibited HCC cell proliferation. Moreover, knockdown of RBFOX3 improved the inhibitory effect of 5-fluorouracil (5-FU) on cell proliferation, migration and invasion, and enhanced the apoptosis induced by 5-FU. However, overexpression of RBFOX3 reduced the inhibitory effect of 5-fluorouracil (5-FU) on cell proliferation, migration and invasion, and decreased the apoptosis induced by 5-FU. We further elucidated that RBFOX3 knockdown synergized with 5-FU to inhibit the growth and invasion of HCC cells through PI3K/AKT and epithelial-mesenchymal transition (EMT) signaling, and promote apoptosis by activating the cytochrome-c/caspase signaling pathway. Finally, we validated that RBFOX3 regulated 5-FU-mediated cytotoxicity in HCC in mouse xenograft models.
Conclusions: The findings from this study indicate that RBFOX3 regulates the chemosensitivity of HCC to 5-FU in vitro and in vivo. Therefore, targeting RBFOX3 may improve the inhibition of HCC growth and progression by 5-FU, and provide a novel potential therapeutic strategy for HCC.
Keywords: 5-fuorouracil (5-FU); Hepatocellular carcinoma (HCC); Rbfox3.
© 2018 The Author(s). Published by S. Karger AG, Basel.