Background: Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) has emerged globally over the last decade as a major nosocomial pathogen that threatens patient care. These highly resistant bacteria are mostly associated with a single Kp clonal group, CG258, but the reasons for its host and hospital adaptation remain largely unknown.
Methods: We analyzed the in vivo evolution of a colistin-resistant KPC-Kp CG258 strain that contaminated a patient following an endoscopy and was responsible for a fatal bacteremia 4.5 years later. Whole-genome sequencing was performed on 17 KPC-Kp isolates from this patient; single-nucleotide polymorphisms were analyzed and their implication in antimicrobial resistance and bacterial host adaptation investigated.
Results: The patient KPC-Kp strain diversified over 4.5 years at a rate of 7.5 substitutions per genome per year, resulting in broad phenotypic modifications. After 2 years of carriage, all isolates restored susceptibility to colistin. Higher expression of the fimbriae conferred the ability to produce more biofilm, and the isolate responsible for a bacteremia grew in human serum. The convergent mutations occurring in specific pathways, such as the respiratory chain and the cell envelope, revealed a complex long-term adaptation of KPC-Kp.
Conclusions: Broad genomic and phenotypic diversification and the parallel selection of pathoadaptive mutations might contribute to long-term carriage and virulence of KPC-Kp CG258 strains and to the dissemination of this clone.