mTORC1 controls lysosomal Ca2+ release through the two-pore channel TPC2

Sci Signal. 2018 Apr 10;11(525):eaao5775. doi: 10.1126/scisignal.aao5775.

Abstract

Two-pore segment channel 2 (TPC2) is a ubiquitously expressed, lysosomally targeted ion channel that aids in terminating autophagy and is inhibited upon its association with mechanistic target of rapamycin (mTOR). It is controversial whether TPC2 mediates lysosomal Ca2+ release or selectively conducts Na+ and whether the binding of nicotinic acid adenine dinucleotide phosphate (NAADP) or phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is required for the activity of this ion channel. We show that TPC2 is required for intracellular Ca2+ signaling in response to NAADP or to mTOR inhibition by rapamycin. In pulmonary arterial myocytes, rapamycin and NAADP evoked global Ca2+ transients that were blocked by depletion of lysosomal Ca2+ stores. Preincubation of cells with high concentrations of rapamycin resulted in desensitization and blocked NAADP-evoked Ca2+ signals. Moreover, rapamycin and NAADP did not evoke discernable Ca2+ transients in myocytes derived from Tpcn2 knockout mice, which showed normal responses to other Ca2+-mobilizing signals. In HEK293 cells stably overexpressing human TPC2, shRNA-mediated knockdown of mTOR blocked rapamycin- and NAADP-evoked Ca2+ signals. Confocal imaging of a genetically encoded Ca2+ indicator fused to TPC2 demonstrated that rapamycin-evoked Ca2+ signals localized to lysosomes and were in close proximity to TPC2. Therefore, inactivation of mTOR may activate TPC2 and consequently lysosomal Ca2+ release.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Channels / genetics
  • Calcium Channels / metabolism*
  • Cells, Cultured
  • HEK293 Cells
  • Humans
  • Lysosomes / drug effects
  • Lysosomes / metabolism*
  • Male
  • Mechanistic Target of Rapamycin Complex 1 / antagonists & inhibitors
  • Mechanistic Target of Rapamycin Complex 1 / metabolism*
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Myocytes, Smooth Muscle / drug effects
  • Myocytes, Smooth Muscle / metabolism
  • NADP / analogs & derivatives
  • NADP / pharmacology
  • Pulmonary Artery / cytology
  • Rats, Wistar
  • Signal Transduction / drug effects
  • Sirolimus / pharmacology

Substances

  • Calcium Channels
  • NADP
  • NAADP
  • Mechanistic Target of Rapamycin Complex 1
  • Calcium
  • Sirolimus