Structural design on the atomic level can provide novel chemistries of hybrid MAX phases and their MXenes. Herein, density functional theory is used to predict phase stability of quaternary i-MAX phases with in-plane chemical order and a general chemistry (W2/3 M21/3 )2 AC, where M2 = Sc, Y (W), and A = Al, Si, Ga, Ge, In, and Sn. Of over 18 compositions probed, only two-with a monoclinic C2/c structure-are predicted to be stable: (W2/3 Sc1/3 )2 AlC and (W2/3 Y1/3 )2 AlC and indeed found to exist. Selectively etching the Al and Sc/Y atoms from these 3D laminates results in W1.33 C-based MXene sheets with ordered metal divacancies. Using electrochemical experiments, this MXene is shown to be a new, promising catalyst for the hydrogen evolution reaction. The addition of yet one more element, W, to the stable of M elements known to form MAX phases, and the synthesis of a pure W-based MXene establishes that the etching of i-MAX phases is a fruitful path for creating new MXene chemistries that has hitherto been not possible, a fact that perforce increases the potential of tuning MXene properties for myriad applications.
Keywords: MXene; density functional theory; hydrogen evolution reaction; i-MAX phase; tungsten.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.