Aim: The clinical application of sorafenib is limited because of its hydrophobicity, low bioavailability and unsatisfying treatment effect. Therefore, sorafenib-loaded PEG-poly (ε-caprolactone) micelles (SF micelles) were fabricated for sorafenib delivery.
Materials & methods: In vitro assays investigated the solubility, dispersity, stability, cytotoxicity and uptake capacity of SF micelles. In vivo biodistribution and therapeutic effects were studied using HepG2-Luc tumor-bearing mice.
Results: SF micelles had a regular spherical structure with good water solubility. In vivo imaging results showed PEG-poly (ε-caprolactone) micelles could elevate the sorafenib concentration in tumor tissues. Meanwhile, SF micelles exhibited higher tumor growth inhibition in vivo.
Conclusion: SF micelles might be a potential drug delivery system, which could enhance the therapeutic effects of sorafenib.
Keywords: drug delivery; hepatocellular carcinoma; micelles; sorafenib; therapy.