Specific receptors for insulin-like growth factor I (IGF-I) on cultured human choriocarcinoma cells (JEG-3 and BeWo) were characterized. The binding of 125I-labeled recombinant (Thr59)IGF-I to the cells was reversible and time, temperature, and pH dependent. Steady state of binding occurred after 16 h at 4 C, pH 7.4. Natural human IGF-I (hIGF-I), hIGF-II, recombinant (N-Met)IGF-I, rat multiplication-stimulating activity, and insulin were 200%, 37%, 37%, 1.6%, and 0.1% as potent as (Thr59)IGF-I in inhibiting the binding of [125I]iodo-(Thr59)IGF-I to JEG-3 cells, respectively. Epidermal growth factor was ineffective. The half-maximal displacement of [125I]iodo-(Thr59)IGF-I by unlabeled (Thr59)IGF-I occurred at 11 +/- 2 ng/ml (mean +/- SEM) in both JEG-3 and BeWo cells. Scatchard analysis of the competitive binding data revealed linear plots indicating a single species of binding sites with an association constant of 0.8 X 10(9) M-1 for the binding of [125I]iodo-(Thr59)IGF-I to both cell lines. The binding capacity was 30,000 and 20,000 sites/cell for JEG-3 and BeWo cells, respectively. Chemical cross-linking of [125I]iodo-(Thr59)IGF-I to JEG-3 cells revealed two receptor complexes of 130K and 260K. Their formation was completely inhibited by an excess of unlabeled (Thr59)IGF-I or hIGF-II. Increasing amounts of insulin affected both labeled bands equally, suggesting that the 130K and 260K bands represent the monomer and dimer forms, respectively, of the ligand-binding alpha-subunit of type I IGF receptor. (Thr59)IGF-I, in a dose-dependent manner, stimulated uptake of nonmetabolizable alpha-[3H]aminoisobutyric acid by JEG-3 cells, showing that the receptor is biologically active. Our results demonstrate that choriocarcinoma cells possess functional high affinity type I IGF receptors and suggest that IGF-I is involved in the growth-regulating processes of JEG-3 and BeWo cells. These cells may provide a useful model to study the role of IGFs in trophoblast physiology.