Glioblastoma multiforme (GBM) is the most malignant form of brain tumors with dismal prognosis despite treatment by surgery combined with radiotherapy and chemotherapy. The neuropeptide Substance P (SP) is the physiological ligand of the neurokinin-1 receptor, which is highly expressed in glioblastoma cells. Thus, SP represents a potential ligand for targeted alpha therapy. In this study, a protocol for the synthesis of SP labeled with the alpha emitter 225 Ac was developed and binding affinity properties were determined. The effects of 225 Ac-DOTA-SP were investigated on human glioblastoma cell lines (T98G, U87MG, U138MG) as well as GBM stem cells. A significant dose-dependent reduction in cell viability was detected up to 6 days after treatment. Also, colony-forming capacity was inhibited at the lower doses tested. In comparison, treatment with the conventional agent temozolomide showed higher cell viability and colony-forming capacity. 225 Ac-DOTA-SP treatment caused induction of late apoptosis pathways. Cells were arrested to G2/M-phase upon treatment. Increasing doses and treatment time caused additional S-phase arrest. Similar results were obtained using human glioblastoma stem cells, known to show radioresistance. Our data suggest that 225 Ac-DOTA-SP is a promising compound for treatment of GBM.
Keywords: glioblastoma cells; glioblastoma stem cells; targeted alpha therapy; temozolomide; α-emitter 225AcDOTA-substance P biomolecule.
© 2018 John Wiley & Sons A/S.