We report two banana-shaped organic semiconducting small molecules containing the relatively unexplored thieno[3,2- b]pyrrole with thiophene and furan flanked benzothiadiazole. Theoretical insights gained by DFT calculations, supported by single crystal structures show that furan flanked benzothiadiazole-thieno[3,2- b]pyrrole small molecule has a higher curvature compared to the thiophene flanked small molecule due to the shorter carbon-oxygen bond in furan. Despite similar optical and electrochemical properties, thiophene flanked small molecule shows average hole mobility up to 8 × 10-2 cm2 V-1 s-1, however furan flanked small molecule performs poorly in thin film transistor devices (μh ≈ 5 × 10-6 cm2 V-1 s-1). The drastic difference in hole mobilities was due to the annealing-induced crystallinity which was demonstrated by the out-of-plane grazing incidence X-ray diffraction and surface morphology studies by tapping mode atomic force microscopy analysis.
Keywords: banana-shape; benzothiadiazole; curvature; donor−acceptor small molecules; organic field effect transistors; thieno[3,2-b]pyrrole.