Combinations of ultrasound (US) and high-pressure homogenization (HPH) at low-medium energy densities were studied as alternative processes to individual US and HPH to produce Tween 80 and whey protein stabilized nanoemulsions, while reducing the energy input. To this aim, preliminary trials were performed to compare emulsification efficacy of single and combined HPH and US treatments delivering low-medium energy densities. Results highlighted the efficacy of US-HPH combined process in reducing the energy required to produce nanoemulsions stabilized with both Tween 80 and whey protein isolate. Subsequently, the effect of emulsifier content (1-3% w/w), oil amount (10-20% w/w) and energy density (47-175 MJ/m3) on emulsion mean particle diameter was evaluated by means of a central composite design. Particles of 140-190 nm were obtained by delivering 175 MJ/m3 energy density at emulsions containing 3% (w/w) Tween 80 and 10% (w/w) oil. In the case of whey protein isolate stabilized emulsions, a reduced emulsifier amount (1% w/w) and intermediate energy density (120 MJ/m3) allowed a minimum droplet size around 220-250 nm to be achieved. Results showed that, in both cases, at least 50% of the energy density should be delivered by HPH to obtain the minimum particle diameter.
Keywords: Combined technologies; Energy reduction; Food emulsifiers; High-power ultrasound; High-pressure homogenization; Nanoemulsion.
Copyright © 2018 Elsevier Ltd. All rights reserved.