Electrochemical conversion of CO2 to value-added chemicals using renewable electricity provides a promising way to mitigate both global warming and the energy crisis. Here, a facile ion-adsorption strategy is reported to construct highly active graphene-based catalysts for CO2 reduction to CO. The isolated transition metal cyclam-like moieties formed upon ion adsorption are found to contribute to the observed improvements. Free from the conventional harsh pyrolysis and acid-leaching procedures, this solution-chemistry strategy is easy to scale up and of general applicability, thus paving a rational avenue for the design of high-efficiency catalysts for CO2 reduction and beyond.
Keywords: CO2 reduction; electrocatalysis; nitrogen-doped graphene; surface modification.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.