TGF-β1/CD105 signaling controls vascular network formation within growth factor sequestering hyaluronic acid hydrogels

PLoS One. 2018 Mar 22;13(3):e0194679. doi: 10.1371/journal.pone.0194679. eCollection 2018.

Abstract

Cell-based strategies for the treatment of ischemic diseases are at the forefront of tissue engineering and regenerative medicine. Cell therapies purportedly can play a key role in the neovascularization of ischemic tissue; however, low survival and poor cell engraftment with the host vasculature following implantation limits their potential to treat ischemic diseases. To overcome these limitations, we previously developed a growth factor sequestering hyaluronic acid (HyA)-based hydrogel that enhanced transplanted mouse cardiosphere-derived cell survival and formation of vasculature that anastomosed with host vessels. In this work, we examined the mechanism by which HyA hydrogels presenting transforming growth factor beta-1 (TGF-β1) promoted proliferation of more clinically relevant human cardiosphere-derived cells (hCDC), and their formation of vascular-like networks in vitro. We observed hCDC proliferation and enhanced formation of vascular-like networks occurred in the presence of TGF-β1. Furthermore, production of nitric oxide (NO), VEGF, and a host of angiogenic factors were increased in the presence of TGF-β1. This response was dependent on the co-activity of CD105 (Endoglin) with the TGF-βR2 receptor, demonstrating its role in the process of angiogenic differentiation and vascular organization of hCDC. These results demonstrated that hCDC form vascular-like networks in vitro, and that the induction of vascular networks by hCDC within growth factor sequestering HyA hydrogels was mediated by TGF-β1/CD105 signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cell- and Tissue-Based Therapy / instrumentation
  • Cell- and Tissue-Based Therapy / methods
  • Cells, Cultured
  • Drug Compounding / methods
  • Endoglin / metabolism*
  • Endothelial Cells* / cytology
  • Endothelial Cells* / drug effects
  • Endothelial Cells* / physiology
  • Humans
  • Hyaluronic Acid / chemistry*
  • Hydrogels* / chemistry
  • Hydrogels* / metabolism
  • Myocardium / cytology
  • Myocardium / metabolism
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / physiology
  • Neovascularization, Physiologic* / drug effects
  • Neovascularization, Physiologic* / physiology
  • Signal Transduction / drug effects
  • Spheroids, Cellular / cytology*
  • Spheroids, Cellular / drug effects
  • Spheroids, Cellular / metabolism
  • Tissue Scaffolds / chemistry
  • Transforming Growth Factor beta1 / metabolism*
  • Transforming Growth Factor beta1 / pharmacology*

Substances

  • Endoglin
  • Hydrogels
  • Transforming Growth Factor beta1
  • Hyaluronic Acid