There is a large clinical requirement for novel vascular grafts; however, the development of novel vascular grafts has not been extremely successful to date. The most successful method for the continuous evaluation of vascular grafts in vivo remains unclear. Therefore, an optimal successive, non-invasive imaging modality is necessary for the study of vascular transplantation. In the present study, a common rabbit model of carotid artery defect was utilized. The patency and hemodynamic characteristics of implanted grafts was examined following surgery by color Doppler ultrasound in three modes, including B-mode, color flow map and pulse-Doppler examination. The results revealed that ultrasound had sufficient spatial resolution to generate clear images of the carotid artery of rabbits with or without the implanted grafts. Color Doppler ultrasound may be applied to evaluate and differentiate the patent, stenosis and occlusion of carotid arteries in rabbits with different vascular grafts implanted. Furthermore, color Doppler ultrasound is an optimal imaging modality for continuous evaluation in vivo. It is also possible for some quantitative analyses to be performed, including measuring the diameter of vascular lumens and the flow velocity of the region of interest. The present study suggests vascular ultrasound as the optimum choice for continuous surveillance of vascular prostheses in vivo, which may provide valuable information about the grafts in order to greatly shorten the experimental period.
Keywords: in vivo; non-invasive monitoring; small-diameter blood vessels; ultrasound.