Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C-S Bond Formation

J Am Chem Soc. 2018 Apr 4;140(13):4604-4612. doi: 10.1021/jacs.7b13628. Epub 2018 Mar 21.

Abstract

Ovothiol is a histidine thiol derivative. The biosynthesis of ovothiol involves an extremely efficient trans-sulfuration strategy. The nonheme iron enzyme OvoA catalyzed oxidative coupling between cysteine and histidine is one of the key steps. Besides catalyzing the oxidative coupling between cysteine and histidine, OvoA also catalyzes the oxidation of cysteine to cysteine sulfinic acid (cysteine dioxygenase activity). Thus far, very little mechanistic information is available for OvoA-catalysis. In this report, we measured the kinetic isotope effect (KIE) in OvoA-catalysis using the isotopically sensitive branching method. In addition, by replacing an active site tyrosine (Tyr417) with 2-amino-3-(4-hydroxy-3-(methylthio)phenyl)propanoic acid (MtTyr) through the amber suppressor mediated unnatural amino acid incorporation method, the two OvoA activities (oxidative coupling between cysteine and histidine, and cysteine dioxygenase activity) can be modulated. These results suggest that the two OvoA activities branch out from a common intermediate and that the active site tyrosine residue plays some key roles in controlling the partitioning between these two pathways.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Catalysis
  • Catalytic Domain
  • Cysteine / chemistry*
  • Methylhistidines / chemistry*
  • Molecular Structure
  • Nonheme Iron Proteins / chemistry*
  • Oxidation-Reduction
  • Sulfhydryl Compounds / chemistry*
  • Tyrosine / chemistry*

Substances

  • Methylhistidines
  • Nonheme Iron Proteins
  • Sulfhydryl Compounds
  • ovothiol C
  • Tyrosine
  • Cysteine