Fast and Robust Unsupervised Identification of MS Lesion Change Using the Statistical Detection of Changes Algorithm

AJNR Am J Neuroradiol. 2018 May;39(5):830-833. doi: 10.3174/ajnr.A5594. Epub 2018 Mar 8.

Abstract

We developed a robust automated algorithm called statistical detection of changes for detecting morphologic changes of multiple sclerosis lesions between 2 T2-weighted FLAIR brain images. Results from 30 patients showed that statistical detection of changes achieved significantly higher sensitivity and specificity (0.964, 95% CI, 0.823-0.994; 0.691, 95% CI, 0.612-0.761) than with the lesion-prediction algorithm (0.614, 95% CI, 0.410-0.784; 0.281, 95% CI, 0.228-0.314), while resulting in a 49% reduction in human review time (P = .007).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Algorithms*
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Multiple Sclerosis / diagnostic imaging*
  • Multiple Sclerosis / pathology*