Gene-by-environment interactions in urban populations modulate risk phenotypes

Nat Commun. 2018 Mar 6;9(1):827. doi: 10.1038/s41467-018-03202-2.

Abstract

Uncovering the interaction between genomes and the environment is a principal challenge of modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to comprehensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual's response to environmental challenges.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Air Pollution
  • Environmental Exposure
  • France / ethnology
  • Gene Expression
  • Gene Flow
  • Gene-Environment Interaction*
  • Humans
  • Middle Aged
  • Penetrance
  • Polymorphism, Genetic
  • Quantitative Trait Loci
  • Quebec
  • Transcriptome