Background: Chronic helminth infections typically induce an immunoregulatory environment, with markedly reduced immune responses to both parasite-specific and unrelated bystander antigens. Here we tested whether these changes are also observed in human infections with Mansonella ozzardi, a neglected filarial nematode widely distributed across Latin America.
Methods: CD4+ T cell populations from microfilaremic (Fil+) and uninfected (Fil-) inhabitants in M. ozzardi-endemic riverine communities in Brazil were characterized by flow cytometry analysis. Plasma concentrations of a wide range of cytokines and chemokines were measured. We examined whether M. ozzardi infection is associated with suppressed in vitro lymphoproliferative and inflammatory cytokine responses upon stimulation with filarial antigen, unrelated antigens or mitogens.
Principal findings/conclusions: Fil+ subjects had lower plasma levels of selected inflammatory cytokines, such as TNF-α, IL-8, and IL-6, than their Fil- counterparts. However, we found no evidence for attenuated T-cell responses to filarial antigens or co-endemic pathogens, such as malaria parasites and Toxoplasma gondii. CD4+ T cells expressing CD39, an ectonucleosidase involved in the generation of the anti-inflammatory molecule adenosine, were increased in frequency in Fil+ subjects, compared to uninfected controls. Significantly, such an expansion was directly proportional to microfilarial loads. Surprisingly, CD39 blocking with a neutralizing antibody suppressed antigen-driven lymphoproliferation in vitro, while decreasing inflammatory cytokine responses, in Fil+ and Fil- individuals. These findings suggest that circulating CD4+ CD39+ T cells comprise subsets with both regulatory and stimulatory roles that contribute to the immune homeostasis in chronic M. ozzardi infection.