Photoinduced size changes in microgel particles loaded with gold nanoparticles (AuNPs) were investigated with an extended multiangle dynamic light scattering (DLS) setup. The DLS setup was equipped with a conventional laser (λ = 633 nm) to determine the microgel particle size. Additionally, a laser (λ = 532 nm) is installed to study the photoresponsive behavior of the AuNP-microgel hybrids. The wavelength of 532 nm is close to the absorption maximum of the plasmon resonance of the AuNPs used in the present study (i.e. spherical AuNPs with a diameter of 14 nm). The extended DLS setup enables us to follow in situ the change in microgel size during irradiation. The light stimulus is directly correlated with the size changes of the hybrid particles and the photothermal effect depends on the intensity of the excitation laser. The increase in excitation laser intensity results in a size reduction of hybrid particles because of the ability of AuNPs to partially transform the absorbed photon energy into heat which is emitted into the surrounding microgel network.