Purpose: We assessed the feasibility of myocardial blood flow (MBF) and flow reserve (MFR) estimation using dynamic SPECT with a novel CZT camera in patients with stable CAD, in comparison with 15O-water PET and fractional flow reserve (FFR).
Methods: Thirty patients were prospectively included and underwent FFR measurements in the main coronary arteries (LAD, LCx, RCA). A stenosis ≥50% was considered obstructive and a FFR abnormal if ≤0.8. All patients underwent a dynamic rest/stress 99mTc-sestamibi CZT-SPECT and 15O-water PET for MBF and MFR calculation. Net retention kinetic modeling was applied to SPECT data to estimate global uptake values, and MBF was derived using Leppo correction. Ischemia by PET and CZT-SPECT was considered present if MFR was lower than 2 and 2.1, respectively.
Results: CZT-SPECT yielded higher stress and rest MBF compared to PET for global and LAD and LCx territories, but not in RCA territory. MFR was similar in global and each vessel territory for both modalities. The sensitivity, specificity, accuracy, positive and negative predictive value of CZT-SPECT were, respectively, 83.3, 95.8, 93.3, 100 and 85.7% for the detection of ischemia and 58.3, 84.6, 81.1, 36.8 and 93% for the detection of hemodynamically significant stenosis (FFR ≤ 0.8).
Conclusions: Dynamic 99mTc-sestamibi CZT-SPECT was technically feasible and provided similar MFR compared to 15O-water PET and high diagnostic value for detecting impaired MFR and abnormal FFR in patients with stable CAD.
Keywords: 15O–water PET; CZT camera; Coronary artery disease; Dynamic SPECT; Fractional flow reserve; Myocardial blood flow; Myocardial flow reserve.