Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons

Neuroscientist. 2018 Dec;24(6):652-670. doi: 10.1177/1073858418759489. Epub 2018 Feb 28.

Abstract

Traumatic brain injury (TBI) is a significant public health problem in the United States, especially for children and adolescents. Current epidemiological data estimate over 600,000 patients younger than 20 years are treated for TBI in emergency rooms annually. While many patients experience a full recovery, for others there can be long-lasting cognitive, neurological, psychological, and behavioral disruptions. TBI in youth can disrupt ongoing brain development and create added family stress during a formative period. The neuroimaging methods used to assess brain injury improve each year, providing researchers a more detailed characterization of the injury and recovery process. In this review, we cover current imaging methods used to quantify brain disruption post-injury, including structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, resting state fMRI, and magnetic resonance spectroscopy (MRS), with brief coverage of other methods, including electroencephalography (EEG), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). We include studies focusing on pediatric moderate-severe TBI from 2 months post-injury and beyond. While the morbidity of pediatric TBI is considerable, continuing advances in imaging methods have the potential to identify new treatment targets that can lead to significant improvements in outcome.

Keywords: DTI; MRI; MRS; brain imaging; cognitive; fMRI; longitudinal; multimodal; pediatric; traumatic brain injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Adolescent
  • Animals
  • Brain / diagnostic imaging*
  • Brain / physiopathology
  • Brain Injuries / diagnostic imaging*
  • Brain Injuries / physiopathology
  • Child
  • Humans
  • Neuroimaging / methods*